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ABSTRACT

Background: In regard to the enhanced use of mammography screening tests for
screening breast cancer, some concerns on the enhancement of the patient's
absorbed dose have increased as well. Therefore, the assessment of the patient's dose
before mammography is very important, and being aware of the dose level by its
estimation can be helpful before radiation. Materials and Methods: To this end, an
artificial neural network (ANN) was used in this study to estimate the entrance surface
air kerma (ESAK). A phantom with similar characteristics of the breast tissue was also
used to collect the required data and the network was trained using some measurable
parameters. To conduct the current research, multilayer perceptron (MLP) neural
network architecture with training algorithms of LMBP, SCGBP, Rprop, BFGS, and
GDBP, as well as radial basis function (RBF) neural network were used. Results: The
results show that the neural network with BFGS training algorithm and 38 hidden layer
neurons has the best performance with 7.40% root mean square error (RMSE) and
coefficient of determination (R?) was obtained as 0.91. Conclusion: According to the
results of this study, there is a good correlation between the estimated network
output and the measured values of the ESAK. The present method will remove the
limitations and costs associated with the preparation process of dosimeter
instruments.

INTRODUCTION

According to the reports of the National Cancer
Institute, following lung cancer, breast cancer is
known as the second deadliest cancer, and about
43,000 women annually die due to breast cancer in
the United States (1). The World Health Organization
has also reported that about 5000 women died due to
breast cancer in Iran in 2020 .

Mammography is known as the most effective
diagnostic method for breast cancer at an early stage;
therefore, it is used for early detection of breast
cancer (). One of the limitations of mammography is
the low contrast between pathological and normal
tissues. This limitation makes it possible to use
low-energy photons in mammography, which can be
easily absorbed in the breast tissue and then increase
the received dose by the person under the test (4.
However, in mammography screening, asymptomatic
women are exposed to radiation ©J; therefore, in each
case, the radiation dose must be kept at the lowest
possible level while maintaining suitable image
quality. In addition, there is always an accidental risk
of developing breast cancer in mammography due to
exposure to breast tissue. In this regard, the
evaluation of the patient's dose during mamm

ography is important (©). It is generally accepted that
glandular tissue is the most sensitive tissue in the
breast to radiation. Thus, the mean glandular dose
(MGD) 1is suggested as the most appropriate
dosimetry, in order to predict the risk of
radiation-induced cancer (78), which is necessary to
achieve ESAK.

One of the common ways used to calculate the
MGD is Monte Carlo simulation. Using this method,
the mammography machine is simulated with its
details, which requires performing a separate
simulation for each center and device due to the
differences in device characteristics, which is
time-consuming and complex (9. Moreover, there is
an error due to the differences in the function of
devices with their nominal characteristics, depending
on the lifetime of each device (®10. In a study
conducted by Suleiman using Bland-Altman analysis
and regression to investigate compatibility and
correlation between organ dose and calculated dose,
a significant bias was observed between these two
doses (11, In another study, the mean MGD error was
calculated as 3.80% by Dance parameters compared
to the dose measured by dosimeter ).

Using another method, it is needed to measure
ESAK of breast tissue and use the conversion factors
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calculated by Dance, which would be time-consuming
and difficult when processing patients. Accordingly,
in this method, the breast tissue dosimetry result is
also required, but due to the limitations in dosimetry
instruments, measurement-based methods cannot be
efficient enough for estimating the dose (12.13),

The neural network has a special ability in finding
nonlinear relationships between inputs and outputs
variables. As well, it does not require any specific
function to express the relationship between input
and output data. Nowadays, researchers have shown
that the use of machine-learning techniques with
their diagnostic function is better than the use of
linear regression and logistics that can be effective on
having a faster and low-cost diagnosis in all
treatment sections (4. In a study performed by
Massera, deep learning was proposed to estimate
volume glandular fraction based on mammographic
images, which were converted to glandularity values
for MGD calculations. In this study, MLP neural
network architecture was also used and network
prediction by R* was compared with the underlying
criterion (15),

The present study aimed to use the optimal neural
network to estimate ESAK for predicting MGD, and to
provide a pre-imaging dose prediction as a necessity.
It is hoped that the proposed model eliminates the
error between the absorption dose measured by the
dosimeters and calculations using the Monte Carlo
simulation method.

MATERIALS AND METHODS

Data collection

The humanlike phantom with the trade name of
Pro-DigiMAM Mark II (SN: M-DT-000152: POLAND)
with  breast tissue characteristics (including
glandularity of 50% and a thickness of 45 mm) that
complies with the international standard IEC 61223-
3-2 was used for the production and collection of
data. In the present study, for ESAK and half-value
layer (HVL) measurement, a solid state dosimeter
(RTI Electronics AB- Barracuda Cabinet BC1-
11020059) was used, so the dosimeter was placed
under the compressor plate of the mammography
unit, next to the phantom. Of note, the ESAK and HVL
values of 224 phantom dosimetry samples used in
this research were collected from 32 mammography
centers in Iran and some exposure parameters such
as anode voltage, tube current, and anode/filter
combinations were then recorded.

ESAK definition
According to Dance study (16), the MGD is defined
as equation (1).

MGD=ESAK.g.c.s (1)

Where ESAK is the incident air kerma at the upper
surface of the breast, which is measured without any
backscatter. Accordingly, the conversion factors were
calculated for various clinical spectra such as HVL,
anode/filter combinations, the compressed breast
thickness, and the rate of breast glandularity. As well,
g stands for the incident air kerma to MGD
conversion factor, which is calculated by Dance and
corresponds to a glandularity rate of 50%. Notably,
Factor c is the correct coefficient of g for any
difference in breast composition from 50%
glandularity. The c-factors calculated by Dance were
defined for glandularity rate between 0.1 and 100%
for breast thickness of 2-11 cm and HVLs of 0.30-0.60
mm AL Finally, the factor s is the correct coefficient of
factor g for the other x-rays spectrum, which changes
in the anode/filter combinations (16).

Data processing

In the current work, MATLAB software was used
for processing the obtained data and modeling a
neural network. Afterward, the network was trained
using data prepared from phantom dosimetry in
mammography centers. The measurable variables,
including tube current (mAs), anode voltage (Kvp),
the thickness of HVL, the overall thickness of the
filter, and anode/filter combinations were applied as
inputs to the network, and ESAK was applied as the
network output. Before the transmission of these
variables to the neural network, it is necessary to pre
-process the data in order to facilitate the procedure
of neural network training. Pre-processing the data
includes some stages as encoding discrete inputs,
management of outlier data, and data normalization.
For this purpose, 11 outlier data were discarded and
data normalization was then performed based on
equation (2) which led the data to be placed between
zero and one:

_ Xmor—X[

*normal Emer —Xmin 2)

Where x; is an original value, and Xnorma is the
normalized value (17), Thereafter, these data were
divided into three training data sets, consisting of
70% of the total data, and in this regard, each
validation and testing set consists of 15% of the total
data. The schematic of neural network design for the
prediction of ESAK is shown in figure 1.

INPUT Variable OUTPUT - Predicted

Neural Network

Kvp

mAs

Preprocessin
HVL P &

|

Unit
Anode/Filter,

|

Filter thickness)

|

Figure 1. Schematic of neural network design for the ESAK
prediction with 5 inputs.
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ANN architecture

MLP neural network with a sigmoid transfer
function in the hidden layer as well as a linear
transfer function in the output layer is known as a
comprehensive estimator (18) shown in figure 2. After
the selection of the base structure of the network, it is
necessary to determine the details of the MLP
network architecture such as the number of layers
and neurons, and the training algorithm. The
standard process of selecting the number of layers is
performed by beginning the training process with a
network consisting of one hidden layer. It is
noteworthy that the use of more than two hidden
layers in artificial neural networks is unconventional
(17, The number of neurons in the output layer is
equal to the target data vector, in such a way that our
network with only one output (ESAK) had only one
output layer. The standard process of determining
the number of neurons is to begin the process of
training neural network with a greater number of
neurons, and after several stages of training and
testing the network with some hidden neurons, the
number of optimal neurons is finally selected based
on the performance index (19).

Inputs Tan-Sigmoid Layer

Linear Layer

a' = tansig(W'p+b") a’ = purelin(W’a'+b")
Figure 2. Two-layer neural network with 5 inputs and the
tan-sigmoid transfer function and one output with the linear
transfer function.

ANN training algorithms

In regard to training the neural network, the
weighting coefficients of the network changed in
order to minimize the performance function like the
mean squared error (MSE). In this research, the most
important learning algorithms such as gradient
descent backpropagation (GDBP), BFGS
quasi-Newton method, resilient backpropagation
(Rprop), scaled conjugate gradient backpropagation
(SCGBP), and Levenberg-Marquardt backpropagation
(LMBP), based on backpropagation algorithm in the
MLP network, which are the most widely used
algorithms in function approximation problems, have
been discussed (17). Additionally, RBF networks are
widely used for the nonparametric estimation of
multidimensional functions (20). Correspondingly,
they have two layers, the hidden layer of which is a
radial basis (such as Gaussian) function and the
output layer is linear (1418). Adjustable important
parameters include the following three parameters:
spread, which shows the variance of radial basis
functions; goal, which is the MSE; and the maximum
number of neural network neurons with the same

number as radial basis functions (21),

Data validation

After the neural network training, it is necessary
to demonstrate its efficiency. The performance of the
models is mostly evaluated by a set of test data that
are not used in the training of the network. In the
present study, the applied indicators in the
evaluation of models were RMSE and R? between the
predicted and measured values. Moreover, RMSE
value measures both the accuracy and validity of
training and test data sets. The RZ?, which is the
square of the correlation coefficient, is one of the
most widely used statistics in the articles related to
the neural network. In addition, the histogram of
network errors was used to evaluate the network (18),

RESULTS

In the current research, by executing the program
for the number of neurons from different hidden
layers, the optimum number for GDBP was
determined to be between 5 and 11 neurons.
However, for other training algorithms, it was
between 32 and 38 neurons, and in higher numbers,
regression was lower than 80% due to the complexity
of problem-solving and calculations. Tables 1 and 2
show the values of RMSE and RZ of neural network
modeling for the test data and total data using
different training algorithms.

According to the results of this study, it can be
stated that GDBP training algorithm with 8 hidden
layers neurons, BFGS with 38 neurons, Rprop with 35
neurons, SCGBP with 33 neurons, and LMBP with 38
neurons have the best performance, respectively.

To find the optimized parameters in RBF neural
network, at first, MSE was calculated for obtaining
the maximum number of network neurons. It was
observed that with the increased maximum number
of neurons, MSE firstly reduced, but after 29 neurons,
MSE increased. Next, to find a Spread parameter
showing the variance, the maximum neuron value of
29 was selected, and MSE was found for various
Spreads. Correspondingly, it was observed that with
increasing Spread, MSE firstly reduced, but after 64, it
increased. MSE and R? values for the optimized
parameters (Goal=0, MaxNeuron=29, Spread=64)
were obtained as 9.98% and 0.84, respectively.

According to the results indicated in tables 1 and
2 and the RBF network, it can be stated that neural
network with training algorithms of BFGS with R2 of
0.91 (R=0.96) and RMSE of 7.40% (MSE=2.72%) has
the best performance in the evaluation ESAK.
Therefore, in order to estimate ESAK with high
accuracy, a two-layer perceptron neural network
along with BFGS training algorithms as well as 38
hidden layer neurons can be used. Figure 3 shows the
results of the BFGS training algorithm for all the data
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with a good correspondence; however, it is not
complete. However, the changes were insignificant,
and it can be ensured that the network has not
overfitted, so the correlation coefficient between
output and target is 0.96, indicating a high
correlation between these two. Furthermore, the
RMSE for all the data was obtained as 0.67 mGy,
which is equal to 7.40%. Furthermore, it can be seen
that, except in some limited instances, the error in
other samples is insignificant. The mean and
standard deviation in the histogram diagram were
also obtained as -0.05 mGy and 0.67 mGy,
respectively, and only 3 outlier data exist with an
error of more than 2 mGy. In addition, the highest
error distribution was around zero. Figure 4 shows
the results of the BFGS training algorithm for the test
data. According to Figure 4, RMSE for the test data
was obtained as 0.81 mGy, which is equal to 8.93%,
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and the correlation coefficient between output and
target was also 0.95, showing a high correlation.
Moreover, the mean and standard deviation in the
histogram were -0.18 mGy and 0.80 mGy,
respectively.

Figure 5 shows the performance diagram of the
BFGS training algorithm, the performance index of
which was MSE, and the early stopping method was
applied in the training process in order to prevent
overfitting of the network. The diagram represents
the best performance regarding the validation of the
data on epoch 35 with a value obtained as 0.56. The
network started data overfitting from epoch 35, and
despite the decreased MSE values of training data, the
MSE value of the validation data increased in the next
epochs. Therefore, the network was stopped at this
epoch and its weights were used as the final weights.

Table 1. RMSE (root mean square error) and R’ (coefficient of determination) of GDBP and BFGS algorithms. (mGy: milligray).

GDBP algorithm BFGS algorithm

Neuron no R’ R’ RMSEAIl | RMSETest |\ RAll | R®Test | RMSE All | RMSE Test
‘| All Data |Test Data | Data (mGy) | Data (mGy) ‘| Data Data | Data (mGy) | Data (mGy)

5 0.72 0.72 1.19 1.45 32 0.91 0.82 0.69 0.96

6 0.69 0.65 1.25 1.29 33 0.88 0.83 0.80 0.83

7 0.74 0.67 1.16 1.34 34 0.89 0.85 0.74 0.84

8 0.80 0.86 1.04 1.05 35 0.88 0.87 0.77 0.99

9 0.70 0.73 1.25 0.95 36 0.83 0.78 0.93 1.10

10 0.76 0.78 1.12 0.98 37 0.86 0.82 0.85 0.95

11 0.76 0.51 1.14 1.37 38 0.91 0.90 0.67 0.81

Table 2. RMSE (root mean square error) and R? (coefficient of determination) of SCGBP, Rprop, and LMBP. algorithms. (mGy:

milligray)
SCGBP algorithm Rprop algorithm LMBP algorithm
Neuron no RZAll | R Test | RMSE All | RMSE Test | R*All | R* Test | RMSE All | RMSE Test | R*All | R* Test | RMSE All | RMSE Test
‘| Data Data |Data (mGy)| Data (mGy) | Data Data |Data (mGy)| Data (mGy) | Data Data |Data (mGy)| Data (mGy)
32 0.87 0.89 0.95 0.74 0.82 0.80 0.96 0.84 0.88 0.82 0.80 1.21
33 0.90 0.86 0.72 0.82 0.87 0.77 0.82 1.17 0.85 0.79 0.91 1.29
34 0.86 0.82 0.87 1.07 0.86 0.85 0.86 0.89 0.88 0.82 0.78 1.10
35 0.88 0.86 0.78 0.90 0.88 0.82 0.78 1.06 0.86 0.78 0.87 1.20
36 0.84 0.84 0.90 0.91 0.88 0.80 0.64 1.19 0.88 0.78 0.80 1.21
37 0.85 0.82 0.87 0.94 0.86 0.77 0.85 1.16 0.86 0.74 0.86 1.17
38 0.89 0.85 0.75 0.91 0.82 0.80 0.95 1.12 0.90 0.91 0.70 0.77

All Data

R =0.9552

Test Data

R=09463

——— Outputs

Targets
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Figure 3. The results of two-layer perceptron neural network
with the BFGS training algorithm and 38 hidden layer neurons
for all the data.

Figure 4. The results of two-layer perceptron neural network
with the BFGS training algorithm and 38 hidden layer neurons
for the test data.
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Best Validation Performance is 0.56243 at epoch 36

Train
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e Goal

Mean Squared Error (MSE)
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65 Epochs

Figure 5. Performance diagram of the most optimal neural
network (BFGS) in ESAK modeling.

DISCUSSION

In this study, the ability of ANN to predict the
ESAK in mammography screening was investigated
to determine the absorbed dose of the breast in the
absence of the measurement tools. According to the
obtained results, ANN with BFGS training algorithm
showed a good performance in predicting the ESAK
values. Thus, using this method, the limitations in the
process of preparing dosimeters are removed and
with the information of individuals as well as the
parameters related to the mammography unit, it
would be possible to estimate MGD accurately before
exposing the patient to radiation.

By comparing the results of this research, it was
shown that the modified back-propagation
algorithms yield better results compared to GDBP
and RBF neural networks, which is in agreement with
the results of the Bayram et al. study (22). Notably, the
BFGS algorithm is performed based on Newton's
method, but it is not needed to compute
second-order partial derivatives, and the Hessian
matrix is updated approximately in each iteration of
the algorithm. The BFGS algorithm has also been
recognized as the most successful algorithm among
published studies (23 that used quasi-newton
methods and is suitable for training small networks.

Hagan et al in 2014 have revealed that if the
number of hidden layer neurons is low, the network
cannot detect the input-output relationship, and if it
is too high, the network begins to memorize the
pattern in order to perform well during training;
however, it has a poor performance for test data and
lacks generalizability in this regard (17). At this work,
the RMSE and the correlation coefficient of the test
data for the BFGS algorithm were obtained as 8.93%
and 0.95, respectively, which are very close to the
results of all data. Correspondingly, it can be inferred
that the number of hidden neurons is correctly
selected and the network is not overfitted and

extrapolated.

In another study, Mohammadi et al % have
evaluated the MGD during mammography using the
two methods of TLD measurement and Monte Carlo
simulation; their results showed that the absorbed
dose difference rate in breast tissue varied from
5.70% to 17%. However, the present study predicted
a MGD with a dose difference rate of 2.72%
compared to the measured values.

Most previous studies (4916) have focused on a
specific breast model, including skin thickness and
breast radius, while ANN allows for more complexity
and parameters. This can be considered as an
advantage over recent studies that were more
sophisticated and provided more realistic breast
models for dosimetry calculations. In a study
conducted on the estimation of the MGD using MLP
neural network using different training algorithms
such as LMBP, BFGS, and SCGBP, Cceke et al. 25 have
selected LMBP training algorithm with a correlation
coefficient of 0.85 as the optimal neural network.
However, in the present study, ANN showed a
correlation coefficient of 0.96. Massera et al. (15 in
their study have used ANN with Keras and
Scikit-learn libraries for regression of dosimetry
values applied to mammography, which showed a
good performance with a 3% error for predicting the
calculated values of both MGD and ESAK. Though, in
the present study, the error rate was calculated as
2.72%.

CONCLUSION

In the present research, ANN has successfully
found the complex pattern involved between ESAK
and various parameters, so it can be considered as an
effective method among different protocols and as an
alternative or complementary method to other ESAK
estimation techniques such as parametric equations
and polynomial fit. In addition, new parameters that
may play an important role in the value of ESAK in
future studies can be added to the neural network
along with more data in this regard as well as other
preprocessing methods that can be used for the
network development.
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